.. _`Partial Least Squares cross-decomposition (PLS regression)`: .. _`org.sysess.sympathy.machinelearning.pls`: Partial Least Squares cross-decomposition (PLS regression) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. image:: PCA.svg :width: 48 Finds the fundamental relations between two matrices X and Y, ie. it finds the (multidimensional) direction in X that best explains maximum multidimensional direction in Y. See also PCA-analysis **Documentation** Finds the fundamental relations between two matrices X and Y, ie. it finds the (multidimensional) direction in X that best explains maximum multidimensional direction in Y. See also PCA-analysis *Configuration*: - *n_components* Number of components to keep. Should be in `[1, min(n_samples, n_features, n_targets)]`. - *scale* Whether to scale `X` and `Y`. - *max_iter* The maximum number of iterations of the power method when `algorithm='nipals'`. Ignored otherwise. - *tol* The tolerance used as convergence criteria in the power method: the algorithm stops whenever the squared norm of `u_i - u_{i-1}` is less than `tol`, where `u` corresponds to the left singular vector. *Attributes*: - *x_weights_* The left singular vectors of the cross-covariance matrices of each iteration. - *y_weights_* The right singular vectors of the cross-covariance matrices of each iteration. - *x_loadings_* The loadings of `X`. - *y_loadings_* The loadings of `Y`. - *x_scores_* The transformed training samples. - *y_scores_* The transformed training targets. - *x_rotations_* The projection matrix used to transform `X`. - *y_rotations_* The projection matrix used to transform `Y`. - *coef_* The coefficients of the linear model such that `Y` is approximated as `Y = X @ coef_`. - *n_iter_* Number of iterations of the power method, for each component. Empty if `algorithm='svd'`. *Input ports*: *Output ports*: **model** : model Model **Definition** *Input ports* *Output ports* :model: model Model .. automodule:: node_decomposition :noindex: .. class:: PLSRegressionCrossDecomposition :noindex: